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THE APPARENT WIDTH OF THE PLATE IN COMPRESSION

By XKarl Marguerre

The present report is a very simplifying derivation .
for the results of an investigation entitled: "The Load
Capacity of a Plate Strip Stressed in Compression beyond
the Buckljng Limit" and published in 1937 in the Zeit-
schrift fur angewandte Mathemgtik und Mechanik.

Following the discussion of the methods and results
of other authors, the writer suggests an extension which
is very desirable from the point of view of airplane de~
sign problems. It affords a practical theoretically
evolved formula for the apparent width under an apprecia-
bly exceeded buckling load,

SUMMARY

The present extension of the customary stability in-’
vestigation to include the supercritical range, proceeds
in two steps. The first step considers the buckling form

w = f cos %; cos %? known from elementary theory, pre-
serves the higher terms in f and yields, with the aid of
the principle of. virtual displacements, a relation which
gives the decrease of the apparent strain stiffness at the
instant of buckling (analytically expressed "the tangent
to the new stresg-strain curve above the critical load"
(Cquation 5-5)).

The second step evolves on the basis of a formula
containing several arbitrary values, from which the prob-
ably produced buckling form, with a greatly exceeded crit-
ical point, can be computed, and which affords a stress-
strain curve (fig. 2) which reproduces with sufficient
agreement the actual conditions existing in a zone

*UDie mittragendé Breite der gedruckten Platte." Luft—
fahrtforschung, vol. 14, no. 3, March 20, 1937, pp.
121~128,
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€* < €3 < 20°€* (as proved by comparison with experimen-

tal results)e The apparent width is conveniently calcu~-
lable (fig. 3) within the cited range with the aid of for-
mula (7.8) or (7.9), which approximately comprise the re=-
sult of the theory.

I. INTROCDUCTION

The following investigation treats the load capacity
of a2 rectangular plate stressed in compression in one 4i=
rection (x) beyond the buckling limit. The plate is ro-
tatably (i.es., free from moments) supported at 213 four
sides by bending-~resistant beams.

-

Before buckling, the axial compression p, = = 0, 1is
uniformly distributed and proportionality exists.between
the crushing €; = - € and the compression P, (accord~-

ing to the law of elasticity). Above the critical value
€*; of the crushing, the strip buckles - more in the mid-
dle than near the restrained sides - resulting in nonuni-
formly distributed axial compression; the centroidal axes,
as commonly expressed, "do no longer fully contribute.!
The sought-for factor is the condition of form change in
the buckled sheet and in particular, the new stress—-strain
curve; l.e., the relation between the mean value:

= 1 nb/E
Pe=y [ B
v/2
of the compression and the mean crushing ¢; (the crush-
ing of the longitudinals):

x dy = ?,

' - *

p, =p, (€,) for € > ¢
The crushing ¢; (respcctively, the amount of the

pushing together of the transverse beams €; 1) is chosen

as the first independent variable of our probdlem; while as
sccond independent variable, the lateral displacement
(pushing together) €, b of the longitudinal sides or
clse the mcan value of the compression in transverse di-
rection is introduced.
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II, THE FUNDAMENTAL EQUATIONS

The hypotheses of classical plate theory (preserva-

tion of the normals, etc.) allow us to express the total

stress~form change condition of the thin plate as func-
tion of the three displacements u = u (x,y), v = v (x,¥),
w =w (x,y) of the plate middle. The problem of plate
stretch (displacements u,v) may be reduced to the bipoten=~
tial equation A A ® = 0O by having recourse to a "stress
function" ¢$; the deflection w follows the "plate equa-
tion" -~ i,e., the bipotential equation with interference
terms The equations for ¢ and w are unrelated.

Premise of this theory is the fundamental assumption
of the "linearigzed" elasticity theory: that all displace-
ments relative to the dimensions of the body,.particularly
as regards the plate thickness s, are small,

But a thin-walled sheet may undergo elastic deflecé-
tions amounting to multiples of its plate thickness; for
the treatment of problems of that kind the linearized
plate theory falls short. Now, a very practical and em=
pirically closely agreeing theory is arrived at by extend-
ing the elementary formulas so that the guadratic portions-

in the deflections w are retainfd in the changes of the
coefficients of the linear element™ ("strain' and "slip-
page") while, as before, the higher powers of the stretch
u,v and likewise the products s w and =z w (because s
is of the same order of magnitude as w) are stricken from
higher than the second order.

If Y denotes_the changes of the coefficients of the
line element, and Y its mean values over the plate thick-—
ness (strain portions), we have:

lA more elaborate argumentation of this hypothesis is
found in a report by E. Trefftz, entitled "On the Derive
atives of Stability Criteria eo. III." Intern. Mech.
Kongress, Stockholm, vol, III, 1930, pe 44; s.a. Handbuch
der Physik, vol. VI, p. 56,
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N
Yip =Y, - 22 g‘g' Yeg = Yoo - 2z 5;g’
3
Yiz = Via 2z g;§§'
with > (201)
Y. = p u é\.z)z P-L @g)a
‘Yn._eax+ ax,'Yaa__zay+ oy )
Y., = 8u 4, 9ov , 9w Ow
e =5t ax T ax oy

wheredby the terms w2, wya, Vy Wy are new compared to
classical theoryr.

All other assumptions of the elasticity theory of
small deformations may be retained unaltered. In particu-
lar, Hooke'!s law in original form:

Y Y
A Y __23_> _ mi ez -__) -
op = B <YO + v 5= ), 0y = EN-FR o+ v 52 ), T = 6 Yy

[ 29

and the terms: -
1 Yll YES
as = E [gv -+ gy _E— + T Yla
B!
= —é-—- [(‘Yll‘l"yaa)a bnd 2 (l"‘v) (‘Yll'Yaa""Ylgg)], > (2.3)
= é% [(cx+dy)a - 2 (1+v) (UXUy-Ta)]_

for the form change energy (FE, abbreviated) as per unit
volume retain their validity.

The FE per unit surface a, 1iIs obtained, for exam-
ple, from equation (2.3) by integrating =z from =~ s/2

to + s/2 as the sum of the "strain energy" a, and the
u ads - -1 ~
bending energy %2

a, = &5 t* a;

with
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d |
2 3w [<u“ ._ ") (" % wy? ) L
~ (uy + vy + wy wy)a]} '

-§—- a —e = -
2 = E’ °1 {[WXX+wa] 2 (1l-v) [Wxxwyy wxya]}

(2.4,4)

D
i

For the practical calculation it 1s of advantage to
introduce the stresses rather than the form changes in the
strain portion Ed,. Dividing the stress o (x,y,z) opre-
vailing at any pnoint within the plate in the conventional
manner into strain 0 and bending stresses ¢ (say, in
form of

- = 2z = = 2z = = 2z =~
O = Ox = = Oy, Oy = Oy = <2 &y, 7 =7 2 T)

the strain portion expresses itself through the stress
mean values 0 in the form of

.2 (1 +v) (5 Oy - 7Y ] (2.4,)

x + Oy )
On the other hand, the strain stresses follow Cauchy's
equilibrium equations:

30 . oT 3T 90

x Lo, I.% . (2.5)
ox dy ox oy .

Il

and the Torm of these equations allows us to replace the

three unknown functions q, O&, T by one "stress func—

tion" & through:

Ox = Oy

yy» Oy = Oxxy T o= = Oy . (2.6)

Hence the etpleq31on (2 4,) for the strain portion of FE
becomes: -

= g L0nrOyy)® =2 (1400) (Onyy=0y )] (2.45)

xx YY

and the total form change energy A stored in a plate of
length 1 and width b may, according to (2.43) and
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(244,) be written as:

1/2 b/E : '
A= / { [(Acb) = 2 (149) (0,0, =0y 2)]
-1/2 -b/2
+ ‘E’ézg‘f [(Aw)z -2 (1-v) (Wxxwyy"wxy 2) ] }d-x ay (2.7)

An equation between stress function @ and deflection
w 1s obtained if Hooke's law (2.2) is specially rewritten
for the mean values (strain portions) of the stresses and
strains: :

Cyy = E! (ux + v vy + 3 (we? v wy2>>
.. = E! <vy + U ouy o+ 1 (wy2 + v wxa)> \ (2.8)
Opy = G (vy + uy + wy wy)

-~

and the displacement <u, v is eliminated from these three
equations (reference 1)

Fith the aid of equations (2.8) to (2. 9) the condi-
tion of stress and strain in the olate can be progress-
ively determined (Ritz's method).

III, DETERMINATION OF STRESS FUNCTION & AND OF
DEFLECTION f AS FUNCTION OF €, AND €3
In contradistinction to the pure energy method em-

ployed in the report quoted at the beginning, which makes
explicit use of only equations (2.2) and (2.41) we apply

®Phere is little hope for an exact integration of (2.9) tow
gether with the "extended plate thecory" which might be
added as second equation to determine ® and w (ef. K.
Marguerre: Z.f.a.M.Me, vol., 16, 1936, p. 353), because

both ecquations are nofy-linear in addition to being coupled
(in contrast to the clementary theory).
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a "mixed" method. he deflection w 1is again expressed
by a Ritz formulas (containing arbitrary values), but we
first compute. @ from the differential equation (2.9),
and then only proceecd to the energy expression in the form
of (2.7) in order to determine, by virtue of the minimal
requirement of the principle of virtual displacement, the
free values as functions of the independent €1 and €z.

Even though this method does not suggest itself as
readily as the previously employed one, it has (and this
is of particular advantage in more complicated cases -~ re-
strai%t, shear) the advantage of minimizing the paver
work,*

1 In fact, the simplest Ritsz formula4 imaginable for
- W
i ‘ TX Yy
? w = f cos 5~ cos ) (3.1)

That is, assuming that this form of buckle produced at the
instant of buckling, is preserved in form even beyond some
distance after exceeding the buckling load (i.e., that on-
ly the free value f changes as the load increases), gives,
for the right-hand side of equation (2.9):

me £2 2m x 27 ¥\
El ——5— 1 —- ._._.__.> 1L e —_—
PELE [ cos —7 cos —— )

b 2T X < e y)
" — + R nint 1 + _—
L (l cos 3 ) cos 3

; and a particular integral of the equation:

| mt £ 2m x em 'y
AAND = = B ——g—5 (cos —— + cog§ ———— (3.2)
! 2 1 1 b

®Both methods are identical in nature because the differ-
ential equations (48) for the displacements wu, v . are sim-
ply the equilibrium equations (2.5) written in the displace-
ments.

“1¢ 1 2>b this theorem must be extended to include the

nodal points in transverse direction, Then 1 denotes
the distance of two nodal lines.
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can be given at once in the form of

21 /1% 2 x N2 on ¥
- — | (- _—= 4 (= —
%p = = B 32[ b) cos 3 <'L> cos 3

The complete solution for ¢ satisfying the limit-
ing conditions is obtained with appropriate solutions of
the correlated homogeneous cguation:

AAO® =0 (3.3)

Assuning predetermined displacements, the required
limiting conditions are:

1 N - e, L ( h) = 1 b Z2. 4
u (i 50 V) = F o€, 5 v(x, #3)=+ €33 (3ed,y )
for the displacements normal to the sides;
L _ = b\ _ -
v (£ 51 V) =F €27y, uw((x, * 5)=Fa x (3edp)

for the displacements tangential to the gsides,

These conditions are not exactly satisfied by combina-
tion of the particular integral with a finite number of so~
lutions of equation (3.3).

On the other hand, it has been proved that the careful
compliance of the limiting conditions for the displacement
tangential to the sides has no marked effect on the sought-
for stress and form change condition of the plate and par-
ticularly, on the stress—strain curve. The requirement of
vanishing derivation of normals instead of (3.42)

ov <i l, y\ du <x, + h)
2 .1 22 - 0 (B.45)
ox ay 3

= 0,

aleng the cited sides - mechanically expressed "disappear-—
ing shear"® - may in consequence be introduced.

- 1
Lo (s, y) [_a_z v aw
G ( 2 7 8x+ ox oy =41/ 2

1 . b _|3v , du ., 3w dw
= + 2) | 9¥ Qou , oW OW
G T <X' 2> [ax * oy ox ay]y=ib/2

Both expressions disappear, in fact.

QTw
g
+
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The limiting conditions (3.4) and (3,43) can
by & happy chance; be complied with in very simple manngr.

Putting
o 2 a -
£ ('L) _ 2T x (‘b 2n y
- Q = R 32[ B ..cos 3 + 1) cos i
1 2 i 2 :
+5 P, XV 3P,V (3.5)
that is, C
= 3 r2 27 _x
-~ P =0 __ =B I —3— cos E5-= = pa,
¥ XX 1
8b (3.6)
_ 2 B2 o y
- = ¢ = B .T.L.._.i... COg ————
I').'XZ Iy g8 1 b pl
equation (2.8), that is:
BEu. =0 - v ¢ -E oy Ev, =90 - v ® - Ly 2
x vy XX x ! ¥ xx vy 2 ¥
and (3.4,), that is:
o /2 B v/2
"o *‘a
o m2fe oy . nafe - eny
812_ b, w2 B'Lr b
[ Jb/2 b/2
T €z = 3 L j/ (Qxx v @yy) dy ZH/P Wy dy}
s ‘o
| 2,02 _ 253 ' :
. = = B %ﬁ§~ cos 2%; + p, = Vvp, + B n-f- (i + cos Z0X

8b ~ 1

zive for the two constants p; and ps the equations?

_ r 72 .8 _1_]?)
pl_E![€1+U€a—8f 1+_b"g]

2 (L 4+ JJ)}
<bE 12

SN et X

(3.7)

Db e

Pa E'[ea"‘vel"

%
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while the condition =~ @xy.= T =0 1is identically ful-

filled in the entire plate and consequently, also, in the’
sides. :

The mechanical significance of constants p, and p,

appears from the equations (3.6). Integration over the
width and length of the nlate gives:

1/2 b/ 2
J/‘ Pyy dx = = py 1, j/ ny dy = - p, b
/2 Zp/2 '
or b/2 / 1/? :
p, =3 5, dx, p, = = P, dy
1 b X ’ 2 1 y
~%/2 -1/2

In this manner the equations (3.7) give at once the sought-
for relations cxisting between the mean values of the
stress and the mean crushing €3 and €5, leaving the éde-
flection £ as the sole unknown guantity. '

The determination of f follows according to the
principle of virtual displacement from the premise that
the potential energy (i.e., the difference between the FE
and the potential of the external forces) becomes a mini-
mume Having assumed rigid side beams while investigating
the equilibrium condition by predetermined displacements
of the sides, the external forces contribute no work on
the sides (fixed during the virtual disvlacement), and the
minimum requircment for the potential energy reduces Vo
the minimum requirement for the FE itself.

As a result, wo necd to formulate only (cf. equations
(2.7), (341), and (3.5)):

) 2
A = é% / [(a2) =~ 2 (1+v) (P ny'Qxyg)] dx dy

gl } 2
+ Bls2 /[(Aw) =2 (121) (wogmygewe, D] dx dy

1B (wis? 4pd 1 2 2 (1+v
- [E 6237 * ;) * § (Patre) - '_ii—”l Py Pe
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\,

and to substitute the stralns for the stresses by means of
o BeR),. giving: :

. ., s éﬁ R .,2_. e
A=A(e€, f)E'sbL {——— + —g— + v o€y epm IE- [€1 (%— + U)
e (1 . __> vt [iap?) (25 4 1)rav h;]

256 b* L 1* 1

4 202 2 RN :
+ I282E0 (B4 1) ! s | S (B.8)
96 b° \12 - J ron ﬂ o

and 8h(e.f) = 0 gives for f the equation:

o f
2
2 2
e, (22 + v) + € 1+ v onZ_S- <f + 1)
! ( 2 2 12 12 v° N2
2 g2 [ b* b2
+ T2 1 (3 ~ p2) (25 + 1) + 4v = (3.9)

16 v° L 1 1®

The taree equations of (%.7) and (3.9) represent the sought-
for stress-strain law above the critical load.

The result is discussed in greater detail when con-
fined to the case of the square nlate (1 = b),

IV, STRESS-STRAIN EQUATIONS FOR THE SQUARE PLATE

The strain stresses are, according to (3.6) and (3.7):

[l + (1 -~ v) cos E%Z]}

afa
B! {e + Vv € - D22 (1 + v)
2 1 8 _bg e

[1 + (1 -~ V) cos Q%EJ}

-

> (4.1)

kel
il

=
il
o

(4.2)
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The shear stress disappears, the normal stresses are dis-
tributed at right angles to the direction of action, ac-
cording to a cosine_law.

For the mean values it gives with (3.9):

2pa = 3 ' 1 2g2
T Hlirm [(e’ v €)= 1y ngg] 4:8)

1 1 2q2
p, = Bt 1-=-0 {251 - (1-v) g+ 1o HE%E}
(4.4)

I = v { - - PR S Eiﬁi}
B! 2¢ 1 v € :
Py 3 - @ ( ) €1 1 «-v 3b2

For the maximum value of the compression ix {(occurring on
the sides), it is:

_ _
= B! l‘___ 34+ v + + . TUBs? } .
pp = Bt & {( ) € + v Izca i (4.5)

while for the minimﬁm value (in the middle), we obtain:
l -v - 2 a2
= Bl e ((l-u)le1 - 2€5 + %—~—2 n=s }} (4.6)
- J

In many cases it is of advantage to treat the stress
and strain condition as function of the mean compression
p; and p, - exerted on the side bveams (as independent vari-
able). The solution of the system (4.4) gives:

2p; + (1 = v) p, = po'L

|

E €
(4.7)

E

€2 = 2p, + (1L = V) p; = poJ

where p, is an abbreviation for

then (4.3) is feplaced by

3
— = p1 + PS - pO (408)
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and (4.1) reduces to the simple form of

2y

:ﬁx = p, - (pl + PZ’ - po) cos 5
B (4.9)
_ 2
B, = Py = (p, * P, = Py) cos =TF
V. THE SPECIAL CASES p, = O AND €5 = O

2

The equations (4.,1) to (4.9) become considerably more
simple when further divided, for two very important prac—
tical cases:

|
Freely shifting jU Nonshifting
]ongltudlnal gides l longitudinal sides
P:O : '€2=O

2

From the second equation (4.4) and (4.7) follows:

O §

1=v ¢ 1 78 g2 1-v
2 2(l=v) 3b° 2

and consequently,

zfa 1 ( Trasa> | _ mefe 1+ <
- 5 Mo et E e
(5011)
from (443) and (4.8).
On the other hand, (4.8) and (4.3) give at once:
2r2 afe | 1 1 m2g2
g mEL2 - - mof2 L Lo (e - S mZsZ)
s = (P = Po) ] 85°  B-v \ '  1+v 3
(5.12 )
With f = 0 these relations give the critical values:
2 42 1 m2g2
€ (£f=0) = €* = ——L1 Tls € (£f=0)= ex* = —=— IO=
r ( ) TR ET 1 ( ) 150 5t
P (£=20) = p* = p . = =‘ *i.; gé;';
1 Fo p, (f=0)=1p 1+v
o 2_2
= e TS~ o * o
1-p2  2h2 E ¢ = E! _1_ mBs2 = Tt e**
1+v  3b?
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in accord with known results. | ' M}ay}i(

The second equation of (4.4) discloses that the,pre-
fix for the transverse strain (or transverse compression)
changes when

2

€ - < 1 n2g2
1 = 5
1 ~-v 3 b
Referred to the critical crushing €* or ¢€**, it means

that (for a transverse contraction figure v = 1/3):

The transverse elongation The transverse compression
becomeg a contraction becomes a tensile stress
by twice exceeded buck- by three times exceeded
ling crushing buckling crushing

With the abbreviations (5.2), the equations (4.3) and (4.8)
reads

n2f2 _ - ¥ mef2 _ _2 - ek
41° € ¢ 41" 3 =« v (s )
m2fe mefea 1
S = 2 - L t = - MK
E 41p° (m p*) E 4p° 1 -v (py =p**)

(5e4)

Eliminating f from these two pairs of equations leaves
the stress-strain law in the form:

Py = p* = % E (g ~e*) p, = p**
-3 2000 (e

(5.5)
Note that the relationship of stress and strain
remaing linear even above the buckling load within the
scope of our approximation; the "apparent strain stiffness”
is
1

Unrelated to v for v = 3

is exactly half as great as in the proper elastic range be-
low the critical load.

Observing that in both cases the compressive stress

PL=E€l
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prevails in the longitudinals, equation (5.5) gives for
the apparent width b, of the sheet, according to the

equation
pL,om = b, b
bm _ p* +.1 (1 p* by e
b D, 2 - 5; . b (3-v) (14v)
2
. v * 0k N\,
-1 (G2 (1+<1+-).P
2 P, & P |
8 p¥*y\
-2 (1 + = 3——) (v = 1/3)

| | (5.6)

The transverse tension set up by nonshifting sides
causes a slight increase in apparent width (i.e., in the
load capacity of the sheet) relative to the case of disap-
e pearing mean transverse stress. The same result obtains
from a comparison of the minimum compression values pro-

‘ duced in the centroidal axis: Substituting the side
i stress Py 2nd the critical compression p* and p**
1

for € and €* (€**) according to (4.5) and (5.2),
equation (4,6) gives for py the values:

] 1 - D ( 2 _(1+v) )
= * ' = S + F—=a * %
Py = P Py T 3% v \PR P

1/5 pp + 4/5 p** (v=1/3)
(5.7)

where it will be observed that in the first case the cen-
troldal axis rejects every compression rise above buck-
ling, while in the second case, because of its better sup-—
port by the transverse fibers, it takes up (even though
small) a part of the compression.

The result expressed by equation (5.5) - that the apn-—
parent strain stiffness in-a square nlate at the instant
of Dbuckling reduces by half, is guite generally valid for

Py = const # 0 €2 = const # 0

The critical value itself is affected by the magnitude of
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D or €3 S 0. We find:

Pa
pkr=p*-Pa Ekr=€**"‘€2
E €xr = p¥ - (1+v) p, Prp = B! [e** ~ (1-v) €3]

Et [epp + U (€**=epy)]
(5.8)

Dy =V (p* = 1)
and from (4.,7) and (4.4) follows:
1l - v

— = L
p]- Pkr E 3 - VU

2
{ [261 + (1“”)€kr'*%252— e**}

- [(3~v)ekr - B.%%gﬁl e**]

B (el - Ekr)

[2P1 - pkr - U(P*“Pkr)]

- [Pkr - ?(p*-Pkr)J

2 (p = Prr) =51 8=2) (cuq ) (5.9)

that is, precisely the law (5.5) except for the values

Dpeess according to (5.8) instead of the values p¥*,

etc.

The linear aspect of the stress—strain curve above
the critical load is, of course, a result of the limita-
tion to the anproximate formula (3.,1). As a matter of
fact, equation (3,1) is valid only "at the very first in-
stant" after exceeding the buckling load. The straight
lines (5.5) are the tangents to the actual stress-strain
curve, winich, starting from these tangents, deflects down-
ward (fige 2).

Vi. COCMPARISON WITH OTHER TEST DATA

The investigations discussed thus far differ from
older reports on this subject (Schnadel, reference 2; Cox,
reference 3, Yamamoto and Xondo, reference 4, Timoshenko,
reference 5), in sofar as, other than hypothosis (3.1)

X Yy
w = f cos T °°% (square plate) (641)
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concerning the buckling form, no other arbitfary_aséump—
.tions are 1ntroduced. ‘

Instead of determining the horizontial displacements -
u and v explieitly -~ or by introducing the stress func-
tion @ direetly - the first three authors cited, intro-

— g
duce the assumntion T =0 or in other words, '5;5 = 0,
o0y ) 6 - .
g;‘ = Os By virtue of this assumption,” oy may be writ-
' b/2
ten in the form: g = % Ox dx and the extended
ki Hooke!s 1aw (2.8): ¥b/2
A b/2 b/ 2 |
l 1 fe — 0t : vl bvi
Ix‘ g/ O':; dx = g-i (Yll + v 'Yaa) dX
1l ~bv/2 ~b/2 .
;’ t . r)b/e )
4 7 ; 1 1
i - S 4 = 2 = 2
4 e L;/ (ux 5 Wx ) dx+v // + 5 Yy > dx] (642)
Ha =bv/2 b/2
'y changes in the special case of Vv = to
_ ’ b/2
o, = % [(u(b/z) ~ (- b/2)]+-—— w,? dx
~vf2
- : b/ 2 4
- - 1 2
= B i € + -é—_B / Wx d.x-j . (6.3)
=p/2
end correspondingly:’ g
- b/2 .
— 1 a
0, = E| - €5 + <. / W dy
y 2b y
8 J=1/2 J

eAdmittedly, Schnodel adduces this reiation by the stress-
function method but the 1nferonce is right only for each
km
single term of the formula w = EL fi.cos —%E cos by
" As soon os seférélﬁsﬁﬁﬁéndu are admitted simultaneously,
the law of superposition naturally ceases to hold and, in
fact, the mixed fterms fifk lead to a nondisappearing

shear stress whose omission, to be sure, renders the cal-~
culation much easier.
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Then the strain portion A of FE becomes in the case of
disappearing transverse contraction: :

E%//(°x2+0ya) ax dy = 'gis[/axa &y +/GY2 dx]
2 2
- B8 )<e wx /g2 dx) dy + ;<e U Dy cly) dx
P) R x 2 " 2p v
2 B < : (6.4)

which means that this portion (by given Ritz formula
for w) can be determined in very simple fashion.

i

The energy of bending is given unchanged according to
(2-4) or (2.7)-

Cox and Yamamoto~Kondo, after him, carry this sim-
plification one step farther by writing Ey(x,y) =0 for

the whole plate; that is, neglect even the work of strain
performed by the transverse stresses. Schnadel, on the
contrary, uses (6.4) as basis’. Allowance for the transe-
verse contraction is in none of the formulas possible.

Cox'!s agsumption Ey (x,y) = O contains two state-
mentsg: that the transverse stress within is invariabdle

—m— = O> and that it disappears &t the side

(oy (x, # b/2) = 0)s In the practical, most important

case of strong - i.e., especially undeflectable longitudi-
nals = the limiting condition is certainly not complied
with; and so for this reason alone a direct comparison of
Cox's results with ours is impossible. Granted even that
we visualize the limiting condition 0Oy = T =0 to have

been realized by some appropriate test arrangement, the
first statement regarding the strain condition within,
still remains fundamentally inasdmigssible. Because, in or-
der to apply Ritz's method in a mathematically unobjec-
tionable manner (that is, for example, preserve the known
dictum that the true load copacity must lie below that
computed by approximate formula), it is not permitted to

7Since Schnadel procecds from a somcwhat diffocrent concept
of the buckling process (division in internal and exter-~
nal energy), the true facts of the case are not apparent
at once,
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mix goometrical statcments (concerning w) with mechanical
oncs (about T). Unless the mechanical thcorem T = O
~happens to-be fulfilled by itsclf, the -FE, must bec re—
duccd by this assumption: concerning the direction of the
discrepancy from the truc valuc (let alonc an estimation
of the errors), nothing more can bc said. This drawback
is felt most when several anproximante solutions are to be
compared; because then it is impossible to deduce that the
formula giving the lowest load capacity must be the better
one,

i) Mathematically, the omission of a part of the FE
£y fares no better. So, for instance, Cox obtains for the
stress-strain law above the buckling 1limit the expression

.

£ - P* = % (€1 bnd €*) (6.5)

i.ee, a drop in (apparent) strain stiffness to one-third.
But, if we compute the case of vanishing side stresses

‘d 5& and T ‘'exact® conformable to the method cited at the
beginning of thig report, we find:

where the coefficient k ranges between 0,41 (v = 0)
and 0434 (V = %) depending on the amount of transverse
contractions For v = 0,3 & has the value 0.38; that is,

below 0,50 (sec equation (5.5)), dut still noticeably above
Oe33. Consequently, the omission of the share of the

FE originating from the transverse and the shearing stress
is not without some effect,

Cox's exmerimental results are in contradiction with
his formula (6.5), but confirm cur formula (5.5) very sat-
isfactorily.

From Schnadel!s data the results (for p, = .0) given
in the nreceding sections can be deduced in complete agree-
- ment, because the shear stress actually does disappear within

the validity range of w = f cos %% cos %F, and the effect

‘of the transverse contraction cancels out in the case of
displaceable longitudinal sides..

Timoshenko elccts to proceed from the exactly valild
expression (2.4) rather than (6.4). But his calculation
differs from the one given here by the introduction of
approximatc assumptions, ecach containing a frece valuc for
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the displacements uw and v (independent of the w for-
mula)e The results reveal the strange fact that the stress
maximum docs not occur on the side but on the inside at a
distance depending on the degrec of loadlng, so that the
stresses actually decrease even toward the side. Apart

from that, there are (as in Yamamotol!s case) tensile stress~
es in the center of the bay under greatly exceeded buckling
loade Instead of the formulas (5.5), through which the de-
crease in apparent strain stiffness above ¢€¢* versus elas-
tic stiffness, finds expression, we find:

p, = p* = 0,640 E(e1 - €%, Py, = D** = 0.624 E1(€ ~€**)
(6.7)
at v = 0.3, according to Timoshenko's calculation,
It is seen that, according to these formulas, the load
capacity is rated too favorable, as it should be; because
Timoshenko uses the energy term without omission while em-
ploying a Ritz formula, which does not express the actual-
ly occurring conditions as well as the one used in the

present reporte.

By an extension of (641) the cited authors seek to
aecount for the fact that the buckles must become deformed
if the buckling load has been exceeded to a comparatively
appreciable extent when, as a matter of fact the bulge form
(6.1) is derived from the energy balance (between bending
and strain energy) at the instant of buckling, and it is
evident that this balance must change as the compressive
forces move toward the sides. The first three authors
quoted are unanimous in assuming that the profile form of

the bulge must remain unchanged (w = cos %} VY(y)) in the

compressive (x) direction, but that transversely to it, a
flattening takes place in the middle, and a cor:esponding
buckling near the edges. According to that assumption,

the longitudinal fibers subjected to higher normal compres-
sion are curved much more, and therefore, are better able.
to avoid the compression,and the increase in bending energy
is less than the thug resulting decrease in strain energy.
Cox particularly assumes the profile form to be bduilt up
from two sine arcs at the edges and a straight piece in

the middle, the length of which follows from the minimum
requirement. Without attacking the other assumptions by

Cox (0y = T = 0), Yamamoto and Kondo turn against the ar-
bitrariness of this assumption regarding the buckling form,
which, in fact, due to the jump in the curvature, is not

at all satisfactory. And that is the reason for their "ex-
act" computation of the form of buckle by means of a none
linear differential equation. As remarkable as their ecn-
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Suihg mathematical problem undoubtedly is, the labor inQ
v lved is not- justified in this case because: first, the
solution of the problem stands and falls with the nremises

: Uy (x,y) = T:(x,y) = 0; that is, its 1mportance from the

practical point of view is subordinate; second, this method
is not worth while even in this particular case because,
with the help of the continuous formula in the curvatures
(see report cited at the beglnnlng) : :

X ™ ¥y :
W = cos - <f1 cos.ig - f3 cos —-—> (6.8)

The two parameters f; and fy give with the energy
method the same buckle pattern and the same stress—-strain
law with slide-rule accuracy as Yamamoto and Kondo achieved
with their exact method. '

Schnadel also employed this same formula (6.8). His
results differ very little from those obtained without the
assumption T = 0. The difference inm buckle form (6.8),
and so from the stress-strain law (5.5) is, moreover,
slight in the casc of Ey # 0 if only one deformation of

the profile =x = constant 1is taken into consideration.
(This remark was also made by Timoshenko.)

The relatively good agreement of Cox's formula for
the apparent width under 100 times exceeded buckling
crushing, is merely accidental. Because the load capacity
is considerably underestimated at the very beginning on
account of the disregarded internal transverse and shear-—
ing stresses, and that necessarily is righted again under
sufficiently exceeded load, because the buckling form,
consistently diverging more and more from the actual form,
mistakingly presents a too high load capacity.

VI. EXTENSION OF FORMULA (6.1)

Th'e Apparent Width Under Considerably
Exceeded Buckling Load

The aforementioned displacement of the pressure dis-
tribution under considerably exceeded buckling load (as
often encountered in practical airplane design) calls for
a much greater divergence from the buckle form (6.1) than
afforded in (6.8). For it is a fact that under ten times
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exceeded buckling load, for example, the two strips adje-
cent to the edges carry nearly the full load, while the
middle of the plate takes up little more than the buck-
ling stress itself, The conception suggested by the ap-
parent width, that the plate falls approximately into
three zones: the two edge strips of width by (the appar-
ent width), and the unloaded middle part are indicative
of the kind of strain to be gxpected. Intermediate buck-
les must form near the edges” since the edge strips, ex—
actly like the whole plate (at start of phenomenon), have
the tendency to split more into square panels rather than
into the very long rectangles, so that we may put

- mx P Sz ( P A éﬁz)
w=f cos 3~ 0% fs cos o cos =~ N cos % _
(7.1)
with the parameters £, f3, and N, For TN =1, for

example, this formulas would have the centroidal axis y =
O retain its cosine form unchanged, while toward the
edge, the middle of each panel (x = 0) develops appreci-
able counterbuckles under sufficiently great f;. With
proper choice of N < 1 the exact location of these
buckles can be more accurately determined and a certain
amount of flattening obtained even in the middle.

The calculation itself may be made by either one of
two methods: the "exact" method, or the approximate meth-
od evolved on the formulas (6.3) and (6.4).

The Yexact" method being, as is quickly proved, ex-
tremely tedious, we give hercinafter, only the approxi-
mate method and then compare the results.

It ige:

w=f, cosg %? cos%g-ﬁs cos 3 ——( 5= N cos ———> (A-—~E>

2
(—%) wx‘2 =% £,% (1=cos N x)(l+cos A y)-—-Z— f32 (l~cos 3A x)

[1 + cos Ay - 20(cos A y+cos 2A y)+NZ(l+cos 3Xx y)1,

8The phenomenon of intermediate buckles above ten times
exceeded buckling load, was experimentally observed by
Lahde (Luftfahrtforschung, vol. 13, 1936, p. 214),
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- g f,f5 (cos X~x~cos 2A x) [(l+cos A x)=N(cos A y+cos 2A y)],

&

wy? = % £,2 (1+cos A x) (l-cos A y) + % f3 (1+cos 3\ x)

3 [1 - cos Ny ~ 6M(cos A y=cos 2A y) + 9n% (l=cos 3 y)]
- % fyfs (cos N y+cos 2\ x) [(l=cos A y)=3N(cos A y~cos 2N )],
y L . | |
. ~
i c 2 — wo2 dx = —_ {f 2 (1 + cos ANy)
i X 2 1
| 5 g
f + 9, [(1 + cos A y) =2M (cos N y + cos 2\ y)
T + N2 (1 + cos 3A y)]}
b
D= }w 2 34y = me {2 (1L + cos A x) [
ov [ ¥ gp° U1
o]
+ £32 [(1 +. cos 3x x) (1 + 91%)]
- 2fy fz (cos A x + cos 2A x)}
| b :
1 3
f 1 2 t {3 4
‘ = G dy = ——2— = f
1 ,// 64 b° ta !
o o
il .| 3
+ 81 f34‘[§ (L + 1% + 6n® = 2n]
+ 18 £,2 £,° [1 + N2+ % (1 -'EH)J:} %'
'b .
1 2 w4 3 4 3 4 ' a.2
1 D2 dx = T2 <2 £4 4+ 2 ¢ 1+ 9
b'//} * T %z pr ; T n)
+ £, £,%2 [4 + 2(1 + 9n®)3-2f,3 fs}

at:

Then (6.4) gives the

strain portion A of the FE
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LI=06s b® {612 - € Zf;’g [£,2 + 9 (1 + 13 £,2]

2
2 4+ e -0y [£,° + (1 + 91%) £5°]

4+ €g b

4 4 3 2 2 l_-

+ £,* (123 ~ 162 + 51307 + 243 n“)] (7e23)

and for the bending portion X; according to (2.7)
T _ G g® 2 2 2
A= 58.5014r2% 4+ 1£,% (100 + 324 N%)]
3
= G827 [r® + £, (25 + 81 12)] (7e24)

In view of the high degree of the ensuing equationsg,
it is not advisable to attempt the determination of £,

fy, and N in relation to €, by means of the three equa-
tionsg:

of, 0, df4 0, on Y (7e31)
and one of the conditions of section V for €5 by_the
usual method, but rather to abandon the condition 5ﬁ = 0
for TN, the most unessential of the parameters, and to

arrive by trial and error at a value of T yilelding the
lowest possible load capacity. The differentiation, ac-
cording to f; and f; gives:

~
- & - €2 +5—-2“%z [12 £,2 + 6 £32 (11=-67M+1202)
~ 6f, fz] + €* =0
-9 (1+ 1% e = (1+4007) €
+ g—éz—:-z [6:&‘12 (11-6M+12n%) =2 %3; - (7e32)
+ 41,2 (123 - 1627 + 513n% + 243114)]
+ (256 + 81n2) e*:'oJ
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‘It also follows from pg = O (tﬁe'Only case considered
here), according to (6.3) and (7.21):
a .
€, = EETL*F [4’:&‘12 + 4 (1 + 912 fsa] (7433)
that is:
2 ' h
€ = €% + 13233 [4£12 = 3F, £5 + £32 (31-187+181°)]
9 (1L+1%) & = (25+8173) e
_ _ r (7e3,)
2
+ =T [£;® (31-18nM+187M%) - £,%/1,
16 b .
+ f,° (244 - 324m + 990M% + 324n*)]

The elimination of the parameter £ from both equations
leaves:

€ - €% :
t =9 (1 + 1n2)

25_+_8l M. _

E*
9 + 9 72

€y -

4 = 3L+ (31 - 187 + 1803) (2
(31~18M+18M°%) - 1/t + (244 ~ 3247 + 990M° + 324n*) t?

(C = fs/fl) (7'4'1)
with which €, /e* 1is readily computed for every TN as

f .
funetion of { = E‘-g-, and inversely _f,(—ee—%).
: 1

_ Purthermore, p, is given according to (6.,3) and
(7.2) through the equation

b2 _ .
1 3 — . 2 2 2 2 :
Pl = e —_5/ O'x dy = €1 = -él_;-g [fl +9 (1+n ) f;'_r, ] (7'42)
~b/2

Inserting € acoording to (7.34) gives:
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2 2 2
p, =p*+ B g [26,® - 36 £ + (13-18M) £, 1] (7443)
that is,
Py - p* f 4 - 6t + (26 - 36M) B (7e4,)
€, = €* 2 4 - 3L + (31 - 1871 + 187°2) t° e

This formula shows conclusively that the apparent stiffness
decreases at { > 0 (i.e., by increasing strain of the
buckles). Analyzing p,(€¢,) as follows, from (7.4,) and
(7e44) for different values of 17, it is seen that with:

n = % the most logical course of the stress—strain curve
is obtained. Then (7.4,) and (7.4,) read:

-~

p, = p* _ B 4 -6+ 8(° E ()
€ =~ €* 24~ 3L+ 28.5 (7 2
| L (7.5)
€, = €* 4 - 3f + 26.5 t?
1 = 11,25 4 s = (N =3)
€, = 4.02 €* 26,5 = 1/¢{ + 350 ¢ ]

(This equation (7.5) represents the sought-=for stress-—
strain law.)

Based upon the exact method, i.e,, with consideration
of the part of the FE originating with the shear stresses,
we obtain (likewise for T = %) in place of (7.5) the re-
lationse? ’

'w
D, = p* E4 -6+ 18.6 (° =B ()
€, = €* T 24 - 3t + 1.8 ¢ 2 ¢
2 > (7.6)
€, = €* . 3L + 31.8 ¢
e, - 4.02 €* "7 31,8 - 1/t + 350 (2
oy

It will be obgerved that the majority of the terms in
these equations (7.6) are in agreement. The discrepan-

9The difference in both theories touches only the factor
of the (mixed) term £,%2f,% in (7.23) for _ the FE, since

the shear stresses do not contribute to the other terms
(a useful check for the "exact" method).

107ne transverse contraction precisely cancels out in this
considered case p, = O,
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cies concern only terms which make themselves felt when
£ =0 (that'is, for '€ 3¢€*) is considerably departed
from. They act in the same direction in both equations:

there is for equal { value, according to (7.6) a greater
€1 than according to (7.5) and a greater reduction fac=

tor m(ﬁ) As it should be, the discrepancy from (5.5) is

%egs)w1th the exact method than with the approxi mation law
6.4

In figure 2, which gives all three curves, She curves
for the €, wvalues diverge not only from their tangents
but also from each other more and more. The result of the
approximati on, as expedient as the abbreviated calculation
may be for a first approach, must be received with caution;
its better agreement with the Lahde~Wagner test points un-
der considerably exceeded dbuckling load (fig. 3) is, of
course, accidental. Cox's theoretical and experimental
points are also shown in figure 2, and show the good agree-—
ment of his experimental points with our own results.

Although the equations (7.6) contain the essentialsg
regerding the behavior of the plate after dbuckling, it may
be of general interest to give the exact formula for the
apparent width. Expressing the apparent width with

bp P, = p, D (7.71)

gives with p;, = E ¢; (= stiffener stress) as extension
of (5.8):

b €* 1 €*
B o= - S @) (1 '€"1"> (7e75)

€,

One may attempt to approximate this curve by a sim-
ple analytical expression. In support of von Kédrmédn's
approximate formula (reference 6), it suggests the use of
n formula of the form of

v
32 = A £ + B
b €1

In fact, a satisfactory approximation is obtained with
A = 0,81 and B = 0,19 within the range of ¢€* € €; <

60 €* or, in other words, with the formula

b, = 1.54 / s 4+ 0,19 D (7.8)

" /PL
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Within a small intermediate range the values obtained by
the formula are too small.

Another "empirical' approximate formula reads:

b 3 /ex
m _
Y ‘/;;' ' (7.9)

This formula, while giving values which are a little too
low for ¢ > 20 €* relative to (7.6) reproduces, how=
ever, the typical behavior (inclusive of ¢, = €*) very
well, and 1ts marked gimplicity recommends i1t.

The Lahde-Wagner test points in figure 3 are merely
by way of reference, since they pertaln to the case of
nonshifting sides and perfect fixity. To become "compar-
able" they are "converted": that is, the course of the
points with el/e* ig taken over and only the critical
value €y, (which, naturally, is higher for fixation), is
identifiecd with our reference point ¢€*. On the assump=
tion that this simple conversion method is permissible,
the agreement, particularly with the formula (7.9) is
very good,

Translation by J. Vanier,
National Advisory Committee
for Acronanutics.
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Figure 1l.- Rectangular plate under uniform compression on
two sides,
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Figure 3.- The apparent width after

exceeding the buckling
load p*= E.¢*--theoretical and ex-
perimental.
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